Airborne Remote Sensing of Atmospheric Composition

Frederik Tack, Michel Van Roozendael Royal Belgian Institute for Space Aeronomy (BIRA-IASB)

GTEO « air-atmosphere », 27-11-2020

Outline

Introduction

- Airborne Imaging Differential Optical Absorption Spectroscopy (I-DOAS)
- Motivation
- Key applications

Airborne Remote Sensing of Atmospheric Composition

- Air quality monitoring & CTM validation \rightarrow BELSPO **BUMBA project** (2015-2018)
- Instrument testing and cal/val strategies → ESA **AROMAPEX project** (2013-2016)
- S-5p/TROPOMI validation → ESA **S5PVAL-BE project** (2019-2021)
- Conclusion & perspectives

Focus on tropospheric NO₂ and APEX hyperspectral imager

Airborne (APEX) imaging spectroscopy

APEX

Product: Vertical column densities (VCD): integrated amount of molecules along the vertical, expressed as molec. cm⁻²

~400-500 nm for NO₂

Airborne Prism Experiment sensor (APEX)

Spatial performance (at 6000 m AGL)			
Spatial CCD	1000 detectors		
FOV (across-track)	28°		
Swath width	3000 m		
IFOV (across-track)	0.028°		
Spatial resolution (across-track)	3 m (binned 60 m)		
Spatial resolution (along-track)	4 m (binned 80 m)		
Other			
Plane speed	72 mps		
Integration time	58 ms		
APEX total mass	354 kg		
Radiometric calibration	yes		

Spectral performance for NO ₂ calibration window			
Spectral interval	370 - 600 nm		
NO ₂ fitting interval	470 - 510 nm		
Spectral detectors	249 (unbinned mode)		
Nominal FWHM	1.5 nm		
In-flight FWHM	> 2.8 and < 3.3 nm		
Nominal spectral shift from CW	< 0.2 nm		
In-flight spectral shift from CW	> 0.05 and < 0.8 nm		
Spectral sampling interval (SSI)	0.9 nm		
Sampling rate	3.1 to 3.6 pixels per FWHM		

Dornier DO-228, operated by DLR

Introduction

Motivation

Key applications

- Air quality monitoring (BUMBA and AROMAPEX project)
 - Mapping of the spatial distribution of pollutants (e.g. NO₂, SO₂, HCHO) at high resolution (~100 m) over cities/industrialised areas
 - Gapfiller between spaceborne and ground-based observations
- Top-down HR source identification and emission estimates
- Trend monitoring and enforcement of (inter)national agreements, e.g. LEZ and ECA
- Chemistry transport model validation (BUMBA project)
- Satellite validation (S5PVAL-BE project)
- Support to satellite mission design (NITRO-CAM project)

BUMBA project 2015-2018 (Belgium)

- BUMBA: Belgian Urban NO₂ Monitoring Based on APEX remote sensing
- **Objectives**: 1) Air quality monitoring, 2) AQ/CTM model validation
- Published in Tack et al., 2017 in AMT

	Brussels	Antwerp	Liège	Antwerp	Liège
Date	30-06-2015	15-04-2015	15-04-2015	19-07-2016	29-06-2018
Flight time LT (UTC + 2)	14:43 - 16:04	10:06 - 11:30	11:55 - 12:18	15:33 - 18:03	10:18 - 10:40
# flightlines	8	9	3	14	4
Flight pattern (Heading °)	0 - 180	0 - 180	40 - 220	0 - 180	40 -220
SZA (°)	29.7 - 38.6	60.4 - 49.6	46.0 - 44.1	36.7 - 57.3	-
Average wind direction (°)	125	235	240	-	-
Average wind speed (Bft)	2	3	3	-	-
Temperature (°C)	27.2	18.7	20.8	-	-
PBL height (m)	1200	450	700	-	700
Lat (°N) / Long (°E)	50.8 / 4.4	51.2 / 4.4	50.6 / 5.6	51.2 / 4.4	50.6 / 5.6
Terrain altitude (m ASL)	76	10	66	10	66
Total population	1.175.173	513.570	195.968	513.570	195.968
Population density (#/km ²)	6751	2496	2828	2496	2828

Ground-based campaign

- Mobile-DOAS
- (Mini-) MAX-DOAS
- CAPS in-situ analyzer
- Ceilometer, CIMEL, ...

APEX NO₂ VCD retrievals (BUMBA)

Liège: 15-04-2015

Brussels

Liège

8

Note: color scales optimized for each flight

HR air quality model validation (BUMBA)

- Conversion of APEX VCD columns to surface concentrations based on 3D CTM (AURORA, CHIMERE)
- RIO-IFDM quantitative validation
 - Constrain model parameters/output based on APEX remote sensing data
 - Are the spatial patterns consistent ?
 - Yes : OK 😳
 - No: improve receptor points grid, assess sensitivity of input data (meteo, emissions), improve simplified model chemistry, etc.

RIO-IFDM (25x25 m²): -Hourly mean NO₂, O₃, PM₁₀, PM_{2.5}

4 x 4 km² RIO

25 x 25 m² RIO-IFDM

http://geo.irceline.be/www/no2_hmean_rioifdm_EN.html

BUMBA project

AROMAPEX project 2016 (Berlin, DE)

- AROMAPEX is an ESA AROMAT activity: Airborne Romanian Measurements of Aerosols and Trace gases (2013 - 2016)
- **Objectives**: 1) Air quality monitoring, 2) Instrument testing, 3) cal/val strategies
- Published in Tack et al., 2019 in AMT

Berlin AM	Berlin PM		
21-04-2016	21-04-2016		
09:34 - 12:01	14:24 - 16:39		
15	14		
0 - 180	0 - 180		
58.3 - 42.4	43.3 - 58.7		
276	285		
3	4		
10	14		
525	1075		
52.28 / 13.18	52.28 / 13.18		
70	70		
3.500.000	3.500.000		
3994	3994		

Ground-based campaign

- Mobile-DOAS
- MAX-DOAS

- CAPS in-situ analyzer
- Ceilometer, CIMEL, ...

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Infrastructuur en Waterstaa

AROMAPEX project

AROMAPEX project 2016 (Berlin, DE)

- 4 imaging sensors simultaneously operated
 - APEX (VITO/BIRA)
- DLR Dornier (6 km AGL)
- AirMAP (IUP Bremen/FU Berlin)
- SWING (BIRA)
- SpectroLite (TNO/TU Delft/KNMI)

APEX

<u>AirMap</u>

SWING

SpectroLite

FUB Cessna (3 km AGL)

APEX NO₂ VCD retrievals (AROMAPEX)

APEX NO₂ VCD retrievals (AROMAPEX)

S5PVAL-BE project 2019-2021 (Belgium)

- S5PVAL-BE: Sentinel-5 precursor validation Belgium
- **Objectives**: 1) S-5p NO₂ product validation, 2) Air quality monitoring
- Published in Tack et al., 2020 in AMTD

Ces

	Brussels	Antwerp	Brussels	Antwerp
Date	26-06-2019	27-06-2019	28-06-2019	29-06-2019
Flight time LT (UTC+2)	14:07 - 15:44	13:37 - 15:23	13:52 - 15:26	13:00 - 14:34
TROPOMI overpass LT (UTC+2)	13:16 (orbit 08811) 14:56 (orbit 08812)	14:37 (orbit 08826)	14:19 (orbit 08840)	14:00 (orbit 08854) 15:41 (orbit 08855)
# flight lines	12	11	12	11
Flight pattern (Heading)	0°, 180°	0°, 180°	0°, 180°	0°, 180°
SZA	28° - 36°	28° - 34°	28° - 34°	29° - 30°
Average wind direction	4°	36°	49°	143°
Average wind speed	3.7 m s ⁻¹	3.7 m s ⁻¹	2.6 m s ⁻¹	2.6 m s ⁻¹
Average temperature	26° C	23° C	24° C	30° C
Average PBL height	684 m	888 m	798 m	No Data

Ground-based campaign

- Mobile-DOAS
- (Mini-) MAX-DOAS
- CAPS in-situ analyzer
- Ceilometer, CIMEL, ...

VITO vision on tect S5PVAL-BE project

APEX NO₂ VCD retrievals (S5PVAL-BE)

Antwerp: 27-06-2019

Antwerp: 29-06-2019

Brussels: 28-06-2019

APEX NO₂ VCD retrievals (S5PVAL-BE)

Scatterplots and linear regression analyses of co-located TROPOMI and averaged APEX NO₂ VCD retrievals for the data sets acquired on 26-29 June 2019 + NO₂ VCD bias (VCD_{TROPO(-CRE)} – VCD_{APEX})

Conclusion and perspectives

- Demonstrated that clear NO₂ signals can be retrieved and individual NO₂ plumes can be identified over urban/industrialised areas based on airborne imaging data
 - High spatial resolution (~100 m²)
 - High spatial coverage (350 km² within 90 minutes)
 - NO₂ VCD error approximately 20%
- High potential for
 - Better understanding of urban pollution \rightarrow gap filler between spaceborne and ground-based
 - Completing emission inventories + trend monitoring
 - Validation of satellite measurements and AQ models + support to satellite mission design
- Perspectives
 - Need for recurrent/systematic flights for continuous monitoring \rightarrow Now restricted to campaigns
 - Deployment in developing countries → Emission inventories are lacking or not well updated
 - Operations from HAPS and drones (ESA HAPS programme)

...Thank you!

uv-vis.aeronomie.be/airborne

S5pcampaigns.aeronomie.be

DOAS for trace gas retrieval

Product: Vertical column densities (VCD): integrated amount of molecules along the vertical, expressed as molec. cm⁻²

DOAS for trace gas retrieval

- Trace gas retrieval based on spectral analysis of scattered sunlight
- DOAS remote sensing (indirect!) technique
 - Differential Optical Absorption Spectroscopy
 - Works in UV-Visible region
 - O₃, HCHO, CHOCHO, BrO... but airborne has focus on **NO₂ and SO₂**
 - DOAS equation based on Lambert-Beer's law:

$$\ln \frac{I_o(\lambda)}{I(\lambda)} = Q_{(a)}(\lambda) + \sum_i \sigma_i(\lambda) SCD_i$$

• **Differential slant column (DSCD)** as direct output: integrated amount of molecules along the observed light path relative to the same quantity in a reference spectrum

VITO-TAP flight planning

- Flight plan
 - Altitude: 20000ft. (6096 m)
 - Length of one flightline (FL): 16-22 km
 - Overlapping flightlines
 - Integration time: 58ms (typical for **unbinned** mode)
 - Extended FLs for "clean" reference spectra and more FLs downwind
 - Time of flight close to local noon or smallest SZA
 - Mandatory condition: clear sky

